

FlowPhotoChem publication lay summary

Title	Concentrating sunlight to store energy efficiently while recycling CO ₂ .
Author of summary and	Etienne Boutin, Mahendra Patel, Egon Kecsenovity, Silvan Suter, Csaba
organization ,	Janáky, and Sophia Haussener
-	Ecole Polytechnique Fédérale de Lausanne
	University of Szeged
Aims	In this paper, we demonstrate that concentrated sunlight can power a CO ₂ photo-electrolyzer, a device that stores solar energy by converting CO ₂ into fuels.
Why is this important?	This study is the first report of concentrated sunlight usage for the photo-electrochemical reduction of CO ₂ . It shows that high efficiency can by maintained in compact, high power density devices.
What methods were used?	In this study, we used concentrated sunlight to increase the efficiency
	and the surface footprint of a photovoltaic (PV) absorber. This PV was powering a CO ₂ electrolyzer that was taking advantage of the excess heat produced on the PV to enhance the efficiency.
What was learned?	We learned and demonstrated that increased power density was not necessarily associated with lower energy conversion efficiency. We also learned that concentrated sunlight is a promising strategy to decrease material costs associated with CO ₂ electrolysis.
How could this research benefit citizens, society and other researchers?	This study constitutes a new milestone on the way towards solar-to-molecule conversion at a relevant industrial scale. Such a technology aims at supporting the deployment of renewable energies by storing peak energy into fuel or other platform chemicals.
Link to full paper/abstract	https://onlinelibrary.wiley.com/doi/10.1002/aenm.202200585